Faces, rdges and Vertlees

Starter

Which of the following shapes are:
Polygons?
\rightarrow A 2D shape with

only straight sides \quad\begin{tabular}{c}
Prisms?

A 3D shape with a

sensistent cross-

section (Some prisms

are also polyhedra!)

\quad

Polyhedra?

\quad

A 3D shape with

flat faces and straight

edges
\end{tabular}\quad None of these?

Faces, Edges and Vertices

Face:
\rightarrow The faces of a shape are its 'sides'. They are areas

Edge:
\rightarrow The edges of a shape are the lines that make it's 'skeleton'

Vertex/Vertices:

\rightarrow The vertices of a shape are its 'corners'

Faces, Edges and Vertices

So how many Faces, Edges and Vertices does this cube have?

Faces: 6

Edges: 12

Vertices: 8

Faces, Edges and Vertices

So how many Faces, Edges and Vertices does this Square-based Pyramid have?

Faces: 5

Edges: 8

Vertices: 5

Faces, Edges and Vertices

Complete the following table:

Shape	Sketch	Faces	Edges	Vertices
Cube	\square	6	12	8
Cuboid	\square	6	12	8
Tetrahedron	Δ	4	6	4
Square-based Pyramid	A	5	8	5
Pentagonal-based Pyramid	Δ	6	10	6
Triangular Prism	4	5	9	6
Hexagonal Prism	\Leftrightarrow	8	18	12
Cylinder	0	3	2	0
Cone	θ	2	1	1
Sphere	0	1	0	0
Frustum	B	6	12	8

Plenary

What is the link between Faces, Edges and Vertices in the Polyhedra?

| Shape | Faces | Edges | Vertices |
| :---: | :---: | :---: | :---: | :---: |
| Cube | 6 | 12 | 8 |
| Cuboid | 6 | 12 | 8 |
| Tetrahedron | 4 | 6 | 4 |
| Square-based Pyramid | 5 | 8 | 5 |
| Pentagonal-based
 Pyramid | 6 | 10 | 6 |
| Triangular Prism | 5 | 9 | 6 |
| Hexagonal Prism | 8 | 18 | 12 |
| Frustum | 6 | 12 | 8 |

Faces + Vertices - Edges $=2$

Cube
$6+8-12=2$

Square-based Pyramid
$5+5-8=2$

Hexagonal Prism
$8+12-18=2$

Plenary

Leonhard Euler (1707-1783)
Knowing this formula allowed mathematicians to further investigate the properties of 3D objects.

You can also set people impossible 'trick' tasks!

"Draw a polyhedron with 5 faces, 8 vertices and 10 edges"
 This is impossible as the numbers do not fit the formula!

(Possible money making opportunity?!)

Summary

- We have learnt the names of some 3D shapes
- We have investigated a link between their Faces, Edges and Vertices
- We have aseen a formula linking these together...

